quarta-feira, 18 de abril de 2012

A morte de Einstein - hoje faz 57 anos.


Hoje é o aniversário da morte de Albert Einstein, em 1955. Seu falecimento foi uma grande perda não apenas para a física, mas para toda a academia — e nas horas seguintes à sua morte, o fotógrafo Ralph Morse (Life) tirou fotos do escritório de Einstein em Princeton do jeitinho que ele deixou.
Ele resume belamente aquele homem: uma mesa notavelmente desarrumada, estantes carregadas de livros e, claro, um quadro negro com suas fórmulas matemáticas de alto nível. Morse relembra como as fotos foram feitas à Life:

“Primeiro fui ao hospital mas estava um caos lá — jornalistas, fotógrafos, curiosos. Então fui ao escritório de Einstein [no Instituto de Estudos Avançados]. No caminho, parei e comprei whisky. Eu sabia que as pessoas estariam relutantes em falar, mas que elas geralmente aceitavam alegremente uma garrafa de bebida, mais do que dinheiro, em troca de ajuda. De qualquer forma, entrei no prédio, encontrei o diretor, ofereci-lhe um pouco de whisky e, assim, ele abriu o escritório.”
O resultado é uma pertinente lembrança da geniosidade de um homem em um dia que nós todos deveríamos nos lembrar. [Life. Foto: Ralph Morse-Time & Life Pictures/Getty Images]
Por Jamie Condliffe
Fonte da reportagem: http://www.gizmodo.com.br/conteudo/por-dentro-do-escritorio-de-albert-einstein/

terça-feira, 17 de abril de 2012

O que é bom precisa ser compartilhado !

O smartphone perfeito.

Por Fabio Jordão em 10 de Abril de 2012, via TecMundo

"Dezenas de fabricantes, centenas de smartphones. Há modelos para todos os gostos, mas poucos são sonhos de consumo. Entre os mais avançados, alguns são mais finos, outros trazem bateria de duração prolongada e existem até os que têm tecnologia 3D. Eles contam com design atraente e configurações de hardware poderosas.

Mas como seria o smartphone perfeito? A resposta para essa pergunta está atrelada ao gosto de cada um. Todavia, cogitamos que a opinião do coletivo poderia resultar em um dispositivo próximo ao que consideramos como perfeito. Assim, montamos um dispositivo com o que há de mais avançado e com recursos úteis aos usuários mais exigentes.
Um pé na realidade, outro no futuro

A principal ideia de montar um aparelho poderoso é reunir tudo que existe de melhor. Assim, nosso aparelho traz processador quad-core, memória RAM de sobra e até um chip gráfico de oito núcleos. Exagero? Não exatamente. Essa configuração tem alguns dos componentes mais avançados da atualidade, ideais para o smartphone perfeito. Evidentemente, o sistema operacional é o Android Ice Cream Sandwich.

A memória interna de 64 GB parece ser mais do que o necessário, mas considerando a quantidade de apps e jogos de qualidade disponíveis na loja Google Play, essa quantidade acaba sendo pouca para tanta coisa interessante. Isso sem contar os vídeos em Full HD que ocupam muito espaço no dispositivo. Daí a ideia de adicionar o espaço para cartão.

Fonte da reportagem: TecMundo: http://www.tecmundo.com.br/
Ilustração: Homero Meyer | Design: Tim Trauer

Leia mais em: http://www.tecmundo.com.br/infografico/21931-como-seria-o-smartphone-perfeito-infografico-.htm#ixzz1sJxg7psv

segunda-feira, 16 de abril de 2012

As mais estranhas partículas pós LHC.

Das mais impressionantes pesquisas sobre o universo, nos últimos tempos, quase todas têm participação de alguma partícula ainda não conhecida pela física, teorizada recentente. Até o Modelo Padrão da Física (teoria criada em 1973 que prevê a existência de partículas como o quark, neutrinos e antineutrinos) já está sendo revisado em vários pontos para incluir novas descobertas.
Para o estudo de questões físicas complicadas, tais como antimatéria, matéria escura e gravitação, os cientistas estão “criando” novas partículas, em um catálogo de constante atualização. Elas seriam satisfatórias para resolver vários problemas da física moderna, mas infelizmente a existência de nenhuma delas foi comprovada na prática. Conheça onze destas partículas:
11 – Stringball
A teoria das cordas prevê que as partículas quânticas, como elétrons e quarks, estão dispostas no universo vibrando como cordas de energia. Esta linha de pensamento, que não vê a partícula como um agente estático sem dimensão, satisfaz o modelo padrão e responde questões como a ação da gravidade em grandes distâncias cósmicas.
Se as partículas de fato vibram como cordas, esta teoria também conceitua algumas anomalias. Uma delas, estudada pelo acelerador de partículas LHC, seria a possível existência de buracos negros em miniatura. Outra seria um momento em que duas partículas abandonam a condição de corda e se chocam uma com a outra, formando o que se chama de “Stringball” (literalmente, “esfera de cordas”), o que deve dar origem a mais dimensões além das três que conhecemos.
O que faria as cordas saírem de seu estado natural e formarem esferas é uma grande quantidade de energia. Dessa maneira, os cientistas teorizam que seria possível criar tais esferas em um dispositivo como o LHC.
10 – Tetraquark
Esta partícula seria basicamente o que diz o nome: um aglomerado de quatro quarks. Em um modelo mais avançado, existiria um “pentaquark”, que inclui na conta um antiquark cujo peso seria a metade de um próton. Um próton, segundo o modelo padrão, é composto por três quarks juntos, ou um quark e um antiquark (proveniente da antimatéria).
Os pesquisadores defendem, contudo, que possam existir agrupamentos maiores de quarks, que superam um próton. A tentativa que chegou mais perto de comprovar sua existência, experimentalmente, aconteceu em 2005, mas falhou.
9 – Glueball
A existência dessa partícula, que ainda não possui tradução específica para o português (seria algo como uma “esfera de glúon”), também se baseia na teoria das cordas. Dentro de um próton, os quarks não são estáveis: a todo momento, são criados e eliminados. Um quark possui carga elétrica negativa, positiva, e uma terceira, hipotética, chamada de “carga de cor”.
Para que os quarks possam se manter juntos em um próton, é preciso haver uma força de atração. Esta força, conforme essa teoria, seria proporcionada porque partículas transitam entre os quarks carregados com a tal carga de cor. Tais partículas, por sua vez, seriam os glúons (cujo nome lembra a ideia de colar, de unir).
Como os glúons também têm carga própria, pesquisadores defendem que eles poderiam se unir por si próprios e compor matéria, formando um novo tipo de partícula. Estas partículas seriam as “glueballs”.
8 – Inflatão
Especialistas em astrofísica debatem intensamente o que teria acontecido logo após o Big Bang. Se uma única explosão foi responsável por criar o universo, como é que ele conseguiu se expandir desse jeito? As teorias mais aceitas propõem que seria necessária uma força de campo energético que espalhou os elementos pelo espaço em uma velocidade superior à da luz. A teoria quântica defende que todo campo está associado a uma partícula. Neste caso, seria o inflatão.
Seguindo a mesma teoria de expansão do universo, o inflatão teria sido responsável por expandir o universo logo após o ponto inicial, mas eventualmente estas partículas seriam dissolvidas em outros tipo de matéria e radiação, até sumir. Com isso, recriar um inflatão demandaria um acelerador de partículas um trilhão de vezes mais potente que o LHC.
7 – Pomerão
Caso as glueballs (partículas originárias dos glúons, que mantêm os quarks unidos) realmente existam, comprová-las na prática é uma tarefa muito difícil, pois exige que se “isole” um momento de atração entre quarks. O mais próximo que se imagina disso é conseguir capturar o instante em que as glueballs são convertidas em pacotes de energia, dentro do próton (O LHC já consegue forjar uma situação semelhante). Tais pacotes seriam o que se chama de pomerão.
Já se concebe a existência do pomerão há um bom tempo, desde antes do modelo padrão de 1973. Antigamente, no entanto, ele era visto como um possível componente fixo na atração energética interna dos prótons.
Hoje, com a teoria das cordas, a abordagem mudou. O pomerão é tido como algo criado a partir de uma colisão de partículas resultante da existência de mais de três dimensões.
6 – Leptoquark
O modelo padrão trabalha com a ideia de que o elétron tem partículas “opositoras”: lépton, múon e tau. Estas três já foram comprovadas na prática e estão incluídas no modelo padrão. O múon, mais pesado que o elétron, era tido como uma partícula “independente”, mas em 1994 um experimento na Alemanha conseguiu converter um elétron em múon a partir de colisões.
Seria preciso, portanto, uma partícula híbrida, um intermediário entre elétron e múon. Baseados no modelo padrão, que classifica o próton como um conjunto unificado de quarks, os cientistas traçaram um paralelo em que léptons são de alguma forma atraídos na formação de elétrons, e o leptoquark desempenharia um papel fundamental nesse sentido.
5 – Winos
A teoria da supersimetria, que tem sido bem aceita nos meios astrofísicos nos últimos anos, enuncia que cada partícula no universo possui uma partícula equivalente para lhe fazer oposição, geralmente com peso diferente, afim de proporcionar equilíbrio. De acordo com as teorias de interações entre partículas, existe o Bóson W (abreviatura de Weak, fraco em inglês), que trabalha com os conceitos de força forte e força fraca.
O equivalente pesado às partículas Bóson W seriam os Winos, responsáveis por proporcionar força de atração nuclear nestas situações. O LHC tem feito estudos tomando como base a teoria da supersimetria, e os Winos entram nestas suposições.
4 – Ânions
Elétrons e quarks são partículas subatômicas agrupadas em uma classe chamada de férmions, que seriam opositores dos bósons. Nas interações dimensionais entre estas duas, existiria um terceiro tipo de partícula, o ânion. Na teoria mais aceita, o ânion sempre carrega parte da energia de uma partícula subatômica durante uma interação com outra partícula, e isso seria a chave para entender algumas relações entre elas.
3 – Galileons
Einstein enunciou que a força gravitacional funciona sob o mesmo padrão em todos os pontos do universo. Dentro do sistema solar, que é até onde a ciência já pôde testar esta tese, o apontamento do físico alemão se mostrou correto. Mas, se isso é verdade, como existem as supernovas, explosões estelares que surgem justamente a partir de uma perturbação gravitacional?
A solução hipotética para este problema seriam as partículas chamadas de Galileons. De maneira geral, tratam-se partículas subatômicas originadas da formação de vácuos quânticos, que seriam responsáveis por enfraquecer a gravidade em determinados pontos do universo. O efeito destas partículas só seria sentido em regiões de baixa densidade no universo, o que não é o caso do sistema solar.
2 – Partículas Majorana
Uma partícula é geralmente idêntica à sua antipartícula, exceto por uma diferença: elas possuem cargas elétricas opostas. Em um estudo mais avançado nesse campo, o cientista italiano Ettore Majorana concebeu uma ideia aparentemente absurda: uma partícula cuja carga é zero, assim como a sua opositora, que na verdade é ela mesma. Logo, uma única partícula seria também sua antipartícula.
A concepção desta ideia ganhou força após a expansão da teoria da supersimetria, em que se defende a existência de um equivalente para cada partícula do universo. O conceito de antimatéria, por exemplo, é satisfeito com essa explicação. Dessa forma, poderiam haver vários tipos de partículas Majorana, todas tendo carga neutra e sendo a antimatéria de si mesmas.
1 – Wimpzilla
Mais de 80% da matéria existente no universo, segundo estimativas, é invisível aos nossos telescópios. Trata-se da matéria escura, objeto de estudo dos cientistas há décadas. A composição básica da matéria escura seriam as chamadas “Partículas Massivas de Interação Fraca” (WIMP, na sigla em inglês). Estas partículas, que pesariam de 10 a 100 vezes mais do que um próton, teriam surgido após o Big Bang e se espalhado paulatinamente pelo universo.
Existe, no entanto, a questão da expansão do universo a partir do início dos tempos. Durante a interação entre matéria e vácuo nesse período, algumas partículas podem ter se desprendido do fluxo da expansão em “pedaços” maiores. Seriam partículas WIMP gigantescas, bilhões de vezes mais pesadas que as originais. O nome, dado por um dos físicos que teorizou as WIMPs, faz mesmo alusão ao gigantesco monstro Godzilla. [New Scientist]

segunda-feira, 2 de abril de 2012

Chip usa luz de laser nas ligações entre os núcleos ao invés de fios.

Até 2017, a HP espera construir um chip de computador que inclui 256 microprocessadores amarrados com feixes de luz.
Com o codinome Corona, o dispositivo movido a laser lidaria com dez trilhões de operações de pontos flutuantes por segundo (FLOPS, que é uma unidade de medida que serve para mensurar a capacidade de processamento de um computador). Em outras palavras, se você colocar apenas cinco deles juntos, você se aproxima da velocidade dos supercomputadores atuais.
O chip de 256 núcleos iria se comunicar em surpreendentes 20 terabytes por segundo, com memória de 10 terabytes por segundo. Isso significa que o chip executaria aplicações de memórias intensivas cerca de duas a seis vezes mais rápido que um chip equivalente feito com fios elétricos.
O Corona também precisa de muito menos energia, ou seja, poderia lidar com 10 a 18 quintilhões de operações de pontos flutuantes por segundo. Isso é 100 vezes mais rápido que o supercomputador mais rápido de hoje.
Fotônica integrada

O chip ótico usa uma tecnologia conhecida como “fotônica integrada”. Redes de telecomunicações e computadores de alta velocidade já usam a luz para enviar informação mais rápida e eficiente.
O Corona é apenas um dos vários esforços para construir chips super rápidos que podem estourar a barreira exascale, incluindo Runnemede da Intel, Angstrom do MIT, Echelon da NVIDIA, e projetos X-Calibur da Sandia. Todos procuram usar fotônica integrada, de alguma forma, mas a tecnologia é o cerne da questão para o Corona HP 256-core.
O problema é que um pouco da tecnologia necessária para construir o Corona não existe. Mas isso está mudando. Recentemente, investigadores e fabricantes de chips encolheram dispositivos ópticos de comunicações de modo que eles podem ser colocados em chips.
Há dois obstáculos que impedem a continuação da intensificação do desempenho de chips no ritmo atual: quanto mais núcleos de processadores enfiarmos em cada chip, mais desafiador é coordená-los. E, como sistemas de computadores ficam maiores, a movimentação de dados dentro e fora de memória torna-se um dreno de energia enorme.
A fotônica integrada pode ajudar com ambos os problemas, proporcionando alta velocidade de baixa potência a comunicações.
A tecnologia também pode desempenhar um papel central na promoção da largura de banda e redução do consumo de energia da internet, principalmente para suporte a serviços de vídeo.
Interferência eletromagnética também é uma preocupação crescente para dispositivos móveis e eletrônicos de automóveis. Todas essas tecnologias eventualmente vão exigir fotônica integrada.
O que falta

A peça que falta do quebra-cabeça é uma forma de gerar luz: o laser. Lasers semicondutores são amplamente utilizados em equipamentos de telecomunicações, impressoras e aparelhos de DVD. Estes lasers são similares aos chips de computador e são pequenos, mas nem de longe o suficiente para serem usados como fontes de luz para circuitos ópticos construídos em chips de computador. Para isso, você precisa fazer lasers microscópicos.
Não é possível fazer um laser de silício, por isso os pesquisadores tentam fazer lasers de outros materiais semicondutores, que são mais ou menos compatíveis com o padrão de chip. Estes são geralmente de fosforeto de índio ou arseneto de gálio. Esta é a abordagem que a Intel, HP e Universidade da Califórnia em Santa Barbara estão tomando.
Já o Instituto de Tecnologia de Massachusetts recentemente surgiu com uma nova abordagem: germânio. O material produz um laser que emite luz no comprimento de onda utilizado por redes de comunicações, que opera em até 120 graus Celsius e pode ser prontamente cultivado em silício.
Especialistas apontam que essa tecnologia se provar eficiente, o chip pode ser realidade até antes de 2017.[Gizmodo]